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In a number of areas of science and technology it is necessary to
deal with rhythmic processes, such as the parasitic modulation of shot
fluctuations in radio-electronic equipment [8,9], changes in the levels
of stability of oscillatory parameters of biological systems [12],
modulation of an acoustic field in a layer of water due to heaving of
its surface [7, 13], change in meteorological parameters under the
action of tidal forces [14]1, etc. Many investigators [1, 11, 12] note
the advisability of using methods of the theory of stationary random
processes for analyzing such essentially nonstationary phenomena as
biological, etc. rhythms, and stress the necessity of developing
statistical methods, based directly on the properties of this type of
nonstationary processes and having an explicit interpretation. The
frequently used additive model - the determinate periodic function
f(t) on a background of stationary noise v(t)-‘f(t)+ Y{(t), analyzable
by methods of the theory of processes with stationary pulsations, does
not describe the main property of rhythmic phenomena - change in the
parameters of the process, analogous to pulsations (of modulation). A
multiplicative model of the type of modulation - f(t)-f(t), where
E (t) - stationary process, although it describes this feature it is
not general. Therefore the need arose for developing a general
probability model of rhythmic phenomena and on this base to develop
effective methods for analyzing them. Although in the literature [11]
the important role of a study of periodic nonstationary random
processes is noted in connection with an analysis of rhythmic
phenomena, this thesis is in no way substantiated, and the theory of
this class of processes is found in the initial phase of development,
to say nothing of its applications. In work {8] only the process of a
type of modulation is studied. Taking this into consideration, the
author together with K.S. Voychishin made an attempt at developing and
substantiating a general model of rhythmic phenomena. The idea of
creating such a model as a base for developing methods of analyzing
them, the use for this purpose of periodically correlated (PK) random
processes (SP)*, and the proof of the necessary theorems belong to the
author, and for substantiation of the model the results from processing




the materials of observations c¢£f the biocactivity of lcaches and
meteorological elements which were obtained by K.S. Vecychishin were
used considerably.

* Footnote. Here, just as in work [5]), we will use the term
"pericdically correlated" in the sense of "periodically rnonstationary
of the second order" (or in a wide sense, if an analogy with stationary
processes is used). This class of processes is sufficient for the
theory being developed. Periodic nonstationary in a narrow sense is
defined, as usual, through the periodic nature of n-dimensional
distributions of probabilities ([11]. {End of footnote])

For creating a meaningful theory, in contrast to mathematical, :t
is not sufficient just to select axioms, it is also necessary that they
represent significant sides of the phenomenon for which the theory 1is
being constructed. Therefore in work [2]) on the basis of an analysis
of tracings of rhythmic phenomena it is pocstulated that if a phenomenon
takes place in an unchanged mode, then it is reasonable to accept the
following as its significant characteristics: a) noise-like nature,
i.e., the fundamental impossibility of their representation in the form
of a complex determinate function; b) harmonizapility - separability
into simple harmonic components; c) nonstationary state of the type of
modulation, characterized by a periodic change in dispersion, and this
means in covariation.

From these postulates it follows [6] that in the correlation
theory a periodically ceorrelated random process (PKSP) should be a
general model of a rhythmic phenomenon.

The purpose of this article, just like that of article [6],
developing the ideas of work [5] and supplementing work [2], is a
further study of the structural properties of PKSP as a model of
rhythms, but in contrast to article [6] the mathematical expectation of
PKSP, generally speaking, is considered different from zero.

Definition 1. We will call the random process (SP) centered if
its mathematical expectation is equal to zero.

Then from a presentation of PKSP through stationary components
(sk) [6]

¥
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(1)

and the uniqueness of the expansion into a Fourier series follows the
validity of the theoren.




Theorem 1. A PKSP is centered whern, and only when, its stationary
components are centered.

Theorem 2. I1f the SK PKSP is uncorrelated and centered, with the
excertion maybe of zero, then it degenerates into into a staticnary &P,
if the SK are only uncorrelated, then into SP with stationary
pulsations and a periodic mean.

Actually, from correlation [5]

* thz-'—;—( hod g i?-‘r—(l!—lu)
b(t.uy= Y B,(ue =Y Y r.We re)
. A=—oc0 k23 ~c0 lea—co
(where rg,j{*) - mutual covariation of k- and j-th SK under the

condition of noncorrelation of SK rk’j(u)zrk(u)s j,k. from which
ri,1-kfu)=ry(u) 8 k,0) we obtain

b, (t N o
W= N r e = B, (),

l-—@
where Bg(*) - covariation of a stationary approximation to PKSP [5],
i.e., SP (t) is stationary relative to covariation. And for the

mathematical expectation from formula (1) we find

2t
o (Rt
ﬂt‘(t) = Z m.e T »
R U
where myg=E Ek(t) - in a general case (for all mkth) a periodic

function with a period of correlation.

Theorem 3. The non-correlatedness of odd SK PKSP with even and
paired together is sufficient so that its covariation would possess
half a period.

Actually, under the conditions of the theorem

0, if (jV k) are odd

rj’k(u) =
1, if (j/\k) are even,
[ _J o
and then in equality (2) B.(“)= 2 f,,',_.(u)= E r.”'”_.(u) is identically
Ay —tn q=—20




equal to zero in the case of odd k.

-

Corollary 1. Under the conditions of the thecrem a FKSP possesses
a half a period if its odd SK are centered.

Corollary 2. The absence of SK is sufficient so that the FXCP
would possess half a period.

Corollary 3. Centered SK, non-correlated pairwise and with all
the remainder, can be related to =zero.

When all the SK are linear transforms of one of them (for example,

this will happen when the PKSP is obtained by conversion of a
stationary SP by a system with periodically changing parameters):

L=420= (M maz,

where () - frequency characteristic of the corresponding invariant
filter Ay, then

2o = fe"" y (s — A7)z (w— )
—n k

£ 2o -

and the correlation components (KK)

B, () = jei““l;“ ¥, (p — I%.l)(p,_, (p. —_ I%.I) dS(p — 12-;—.‘-) .

and the covariations of components

]
. '“ Ay
ry@= e, M) ¥, Q)dS ().

—
From here it is evident that the components will be non-correlated if
¥, (A) B, (%) =0.

In the particular case under consideration it is directly evident

that a situation is possible when Bi(0)=0 and Byg(u)gkO0 in the case of

ugho. For this it is sufficient to assume that the j-th SK is the k-th
Hilbert transform , i.e., ya (A)=1, and ma-(ﬂ_)z-i sgn 4 , since

ry (U) = 2§sin AdS,(\).
0




Example. Assume
N =E e 4 (e,

where V - denotes the conversion to the Hilbert transform, then
.

t R ’Au=, u r v = - v —u Y

aking "3 (OF E?) r“( ) intc account we obtain

bn("“)""2’;@)005.\u+8'(u)¢“"“ , where B,(u)nr‘i\(a)e"““-—rﬁ(—u)e“"“‘,r trom here

Bo=0. The dispersion of this process t::,";(t)=r=2rt.(0)=’2<:|§'-"-mﬁSt . If the

process E(t) is noncentered and E {-;(t)=m, then myz {(t)=2m cos At.

In the case when the converter 1s a differential cperator with

N

periodic coefficients {a'(H!1=T.#), then WM =Y gl(a}) ., where o -
]

the k-th coefficient of the Fourier function al(-). When only <*he

actual process in the steady-state mode are considered, then odd 1 are
absent and the period of correlatedness of the process will be equal to
half of the period of change of the parameters of the converter. Then,
having designated the product of the series

L (] @ «©
PyM= % o' Y diny= ¥ [ Y a:._.a:]m) .

lm—oo Ams—on Mm—o0 | san—an

for the covariation SK we find

) = e, ayds .

If we designate ,+(,.)____;,($(1)+‘(__1” an even part of spectral density and

take into account the evenness of functions a,‘(.) , then
-
’u.z,-(o)=2fP,.,,,(A‘)s+(x)a.
0

since the integral with an odd part is equal to zero. From here the
- J

initial value of KK according to formula (2) Bzu(0)=§Qu(A’)s+(A)a , where
o

N
’ -
Qu(g)ggz pum’_”(,._) . For example, for operators of the second and
: IO




o
fourth orders Qa(ﬁ)=l‘ E .

af@si—y*
[ —c0
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e —co lma—co [ —c

It follows from this that the values cf KK in zZerc only in
exceptional cases will be zeros, i.e., for steady-state prccesses,
representing transforms of stationary processes with the help of
differential operators with periodic coefficients, as a rule, the
dispersion and mathematical expectation (if the processes are not
centered) possess a precise period, equal to the period of
correlatedness and are half of the period of change c¢f the operator
coefficients. Thus the PKSP, the result of a stationary disturbance of
a system with periodically changing parameters, will possess a period
which is half the period of change of its parameters.

The null covariation component describes the distribution of
energy by harmonics which make up the PKSP [6], and therefore its role
in the characteristics of the process is not at all different from the
role of other KK, which is also evident from the following theorenms.

Theorem 4. In order that the zZero KK be identically equal to zero
it is necessary and sufficient that it be egqual to zero in zero.

This follows directly from the fact that Bgp(-) is a covariation of
a stationary approximation to PKSP, and the covariation of the
stationary process satisfies the condition r (u)$r.§(0)= 0;, which in
this case gives the inequality IBO(U)L$BO(U)-

o

From formula (2) we find that B, (0) = Y rn@ , and since all

. == —cn
ritdy = 625> 0 as dispersions of stationary processes, then the equality

Bp(0)=0 is poscible only in the case when all 0" =0. But since from

o .
this same formula (2) Byl < 2 lfl',_,(u)l and the rutual covariation of
{m—ce
stationary processes satisfies the inequality thWH’<'Hm'uwy , then

from here follows the conclusion, which, in view of its importance, we
will formulate as a lemma.

Lenma 1. If Bg(0)=0, then all KK are identically equal to zero.




Actually, since when Bp(0)=0 pulsations are absent, <the pv
degenerates into a determinate function. Thus the following thecr
takes place.

Theorem 5. Equality to zero of the value in zero of a zero KK 1s
necessary and sufficient so that the PKSP would degenerate into a
determinate function {(equal to its average).

The sufficiency of the condition follcws from formula (8), lemra 1
and the definition of dispersion % AU L And the necessity 1is
evident from the fact that the dispersion cf pulsat:ions cof a
determinate function is equal to zero. Then from the property of
covariation |b€1(_t‘u)l<°t(t+u)°§(t) it follows that |bt(t,u)|<0 , and

‘l .
B.(u)]<7-)]b€(t,u)ldt
0

since then Bk(u)=0 in the case of all k and u.

Definition 2. As normalization of SP we will name, in an analogy
with normalization of random variables, the transition from process
g (t) to process

T B0 _O—m@ (3)
§(t) o‘(‘) - o‘“) .
Its covariation
__ Hw
byt.u) = S U Fula ()’ (4)

and the average and dispersion, naturally, are defined as m?“)=4l0?«)=l
in the case of all t. Therefore the unique characteristic of rhythm of
a normalized PKSP can only be covariation. Since formulas {(3) and (4)
have meaning, when O}(t)qbo for all t, then from formula (2) it follows
" . i imz-;—t had “T
t~at the function ot(t+u)c§(t)= S e S B,._,(O)B.(O)f
M —o0 {=r—o0
is periodic with respect to t with a period T and is non-vanishing.

Then based on the Wiener theorem [3] the function [%U-%uhkunq

is expanded into an absolutely convergent trigonometric series of the
same order.




Since the procduct of the periodic functions of one period i1s & periodic
function of the same period, then this proves the validity of <he
theorenm.

Theorem 6. The periodic correlatedness of an SP is 1nvar:iant with
respect to its normalization.

In particular, the covariation of a normalized PKSP, possessing a
constant dispersion {evidently G? (t)=Bg(0})), will be

b~ (f)= \ By e t i dvisable that lizati £
~u)= \ 4 . I 1s advisa e a normalization o processes
) ~ B,

A —o0
by applied i1in the case of a comparative study of the rhythm of

diverse-scale physical and other parameters.
Assume now that n (t) - a stationary SP with the covariation

o
N 7Y
Rn('), and e = S‘ dF(A), where F(:) - certain complex measure of
—a»

limited variation, then the process

EO =10/ (5)

is harmonizable [10] and its function of covariation

by (¢. ) = Ry (u) (¢ + u) F{O). (6)

and dispersion

ol () = oalf " ()

Then the normalized function of covariation

by (. u) = 0, (1) Flrtlsa—sego)

Ry (u)

where Q,‘(u)= ant




Definition 3. A process of the type (5) we will 2all a process of
the type of simple modulation.

If the function #F(-) is periodic and {.,} - :ts Fourier
coefficients, then the KK of the process f (t) will be
a0
- l'lgiu
Bi) =R ) B ey T
law—c0

The following theorems stem from the previous formulas.

Theorem 7. A process of the type of simple modulation with an
Aactual periodic modulating function is a PKSP which has been normalized
T stationary.

Actually under the conditions of the theorem bf(t’ u)=en(u).

Theorem 8. A symmetry of the third kind of a modulating function
of an SP of the type of simple modulation is a necessary and sufficient
condition of the fact that the period of its dispersion would be half
the period of the correlated state.

The condition of symmetry of the third kind is fulfilliment of the
. T . .
equality f !+——E— = —f(t)in the case of all t, therefore the function

T
[f(-)/ possesses a period -— and confirmation of the theorem follows
from formula (7). 2

Theorem 9. Simple modulation is necessary and sufficient for the
conversion of white noise into nonstationary white noise, and if the
modulating function is periodic, then this is PK noise [6].

The necessity follows from the definition of nonstationary white
noise and the fact that the negative function is a square of the
modulus of the function g(t)=[£(t) 2)0, and the sufficiency is found
from formula (6) and the property of the & -function:

8(x-a) f(x)= §(x-a) f (a).

From the analysis made of the PKSP it is evident that the precise
period of dispersion depends on the values in the zero of the KK, and
the precise period of the average - on the centrality of the SK. Since
in a general case these properties are independent, then the period of
dispersion and the period of the average can be used for estimating the
precise period of correlatedness of the PKSP. In this case the
dispersion is more significant than the average, which frequently is
considered equal to zero [4]. The most significant characteristic is
the function of covariation, describing the correlatedness of the
harmonic components of the PKSP, and its period is determined by the
KK.




In particular, for a normalized PKSP the function of covariatior is the
unique characteristic of rhythm.

It is evident from formula (1) that when all SK are proportional
to one of them, which can be considered as zero, i.e., when
Ek(t)=:dk Eg(t), where {™® i} - complex numbers, then the PKSP turns
into a process of the type of simple modulation

o -ﬂt
§n = %(0._23“ a.e" To=%0f0.

If all the SK are non-correlated and non-centered, then the PKSP turns
into an additive model - a periodic determinate function on a
background of stationary noise:

°, w2,
EO= X me T +10,

Rue —o0

where ll(t) - stationary SP with a null average and the covariation

o
—u

R, (u) = ¥ r.(u)e‘ T
A= —co

It is evident from the considerations presented that the idea of
isolation of the determinate component of the rhythmic phenomenon and
the study of the stationary residual turns out to be inconsistent,
since only in an additive model can it have direct meaning. In this
case the stationary residual cannot describe the rhythmic nature, and
in other models the residual is not stationary.

The theorems proved above jointly with the theorems in works [5,6]
serve as substantiation of the model of rhythmic phenomenon as PKSP and
reveal a series of its significant properties, and also show that
neither additive nor multiplicative models can be considered as the
most general for rhythmic phenomena, biological in particular, which
both by isolation of mathematical expectation and by normalization are
not reduced to stationary processes.

10
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